
HasView
Brandon Wang and Kaushik Iyer

University of California at Berkeley

Introduction

I A system that allows visual Haskell programming
I Use ideas from dataflow programming:

I functions 7→ blocks
I recursion 7→ nesting
I control flow 7→ arrows

I Requirements:

Extensible Need to be able to easily write new structures —
use Python

Modular Class based structure to allow for abstraction of
GUI elements

Compilation Need to be able to compile to GHC-compatible
Haskell

Serialization

HasView

program

Serialize

HasScript

 Block
Haskell

 codeSerialize

Serialize
Container

 Block
Haskell code

 let & in

Haskell

main IO

Serialization and Resolution Example

Serialization and Resolution Explanation

Resolution

Serialization

Calculating fib

Calculating map

Compiled fib code

main = let fib 0 = let l1 = 0

in l1

fib 1 = let l2 = 1

in l2

fib n = let l6 = n

l7 = n

minustwo x = x - 2

l12 = plus l10 l11

minusone x = x - 1

plus x y = x + y

l10 = (fib 18)

l11 = (fib 19)

l8 = minusone l6

l9 = minustwo l7

in l12

l0 = fib l13

l13 = 25

in print l0

Compiled map code

main = let l10 = map l9 l8

map f [] = let l0 = []

in l0

map f (x:xs) = let l6 = (map l5 l4)

l7 = cons l3 l6

l4 = xs

l5 = f

l2 = x

l3 = (f l2)

cons h r = h:r

in l7

square n = n*n

l8 = [1,2,3,4,5]

l9 = square

in print l10

CS 264 - EECS Department - UC Berkeley - Berkeley, California Mail: {kiyer,brandonwang}@berkeley.edu http://www.eecs.berkeley.edu

